

Opto Electronics

Laser Diodes

Laser Diodes

ROHM produces the largest volume of laser diodes in the industry. Stable production and quality are ensured through a 100% in-house manufacturing process and the use of common assembly lines. A wide lineup is available, from low- to high-power types.

Table of Contents

Overview	3
Features and Applications	3
Lineup by Application	4
Low Output 2-Wavelength Laser Diode for DVD/CD Playback	5
Low Output 2-Wavelength Laser Diode for DVD/CD Playback	6
Self-pulsation Dual Wavelength Laser Diodes for DVD/CD Playback	7
Narrow Pitch Twin Beam Infrared Laser Diodes for Laser Printers	8
Product Lineup	9
Dimensions	11
Packaging Specifications	12
Safety	12
Symbols and Definitions	13

What is a Laser Diode ?

Overview

What is a laser ?

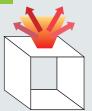
Laser is actually an acronym for Light Amplification by Stimulated Emission of Radiation. This basically means that the amplitude of light is increased through induced emission.

The difference between laser diodes and light emitting diodes (LEDs)

Both laser diodes and LEDs are formed through the creation of a PN semiconductor junction. When an electrical current is supplied, a positive hole, which has a positive charge, bonds with a negatively charged electron, resulting in light emission.

Since an LED produces natural light, the wavelength and phase are not uniform. A laser diode, on the other hand, operates by induced emission, resulting in uniform light wavelength and phase. Its particular characteristics are based on the underlying theory that the amplitude of light increases as it travels back and forth within a resonator, making it possible to obtain a larger optical output.

Therefore, a laser diode, in contrast with an LED, generates coherent or 'arrayed' light using a lens, which can be sent long distances or focused on an extremely small point. In addition, faster operation is possible compared with LEDs, enabling widespread use in more disparate fields.


ructural Diagram of a Laser Diode

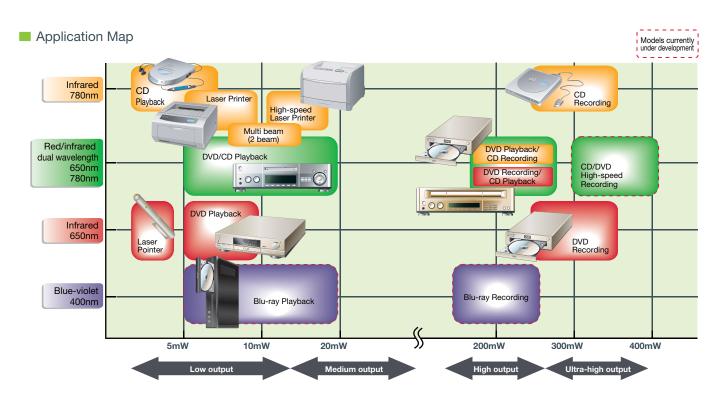
- · Linear light emission
- Monochrome light

Travels back and forth between reflecting mirrors, increasing amplitude

Structural Diagram of a Light Emitting Diode

- · Light is dispersed
- Mixed colors

Features and Applications


Sample applications that use lasers are shown at right. Additional uses, such as for projection or minute heating, are also possible.

Function List

Function	Characteristics	Application Examples
① Reading	Enables high-speed reading of minute signals	Optical disk reading / writing (CDs, DVDs, Blu-ray)
2 Recording	Image signals are written by changing the color of an organic membrane based on high output	Optical disk recording (CD-R, DVD-R, Blu-ray)
③ Photoexposure	Signals are drawn by irradiating a photosensitive drum	Laser printers
(4) Communications	High-speed modulation is possible, making it possible to transmit large amounts of information	Optical communications in PCs, mobile phones, and other equipment.
(5) Illumination	Allows accurate pointing via pin spot illumination	Laser microscopes, laser scalpels, pointing markers, and the like
(6) Measurement	Attenuation over distance is low, making long-distance transmission possible	Road distance/building height measurements
 Sensing 	Interference fringes are easily created, enabling detection of minute changes	Sensing devices such as fire alarms, dust control, and laser mice.

Lineup by Application

Lineup by Application

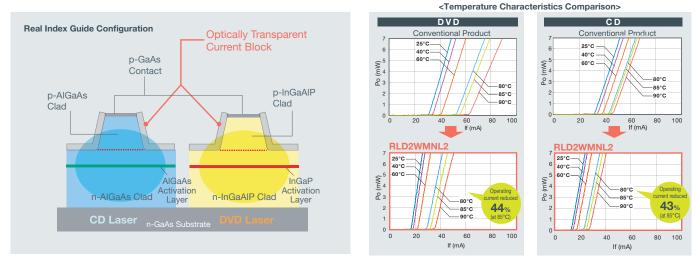
				0	ptical Dis	SC		La	aser Print	ter		Other	
Туре	Part No.	Features	BD-P	DVD-P /ROM	СОМВО	DVD-R	CD-P /ROM	High Speed	Middle Speed	Low Speed	General Purpose	Bar Code Reader	Sensor
660nm/780r	nm Dual Wavelength La	ser											
	RLD2WMUV2	Standard product / CAN											
	RLD2WMFV2	Standard product / Frame											
	New RLD2WMFL1	High ESD resistance / Frame											
	New RLD2WMNL2	Automotive-grade (85°C) / Glass-sealed CAN											
Low/Low	★ RLD2WMFL3	80°C-class / Frame											
	★ RLD2WMUL3	80°C-class / CAN											
	New RLD2WMFR1	Self pulsation / Frame											
	★ RLD2WMDR1	Self pulsation / Covered frame											
Medium/Medium	★ RLD2WMFL4	10mW / Frame											
Weatarn/Weatarn	New RLD2WMUS3	20mW / CAN											
Low/High	RLD2WMGZ4	DVD=10mW / CD=240mW											
High/Low	RLD2WMZS1	DVD=240mW / CD=20mW											
High/High	★ RLD2WMGU1	DVD=300mW / CD=350mW											
Multi-beam	Laser												
High Speed	★ RLD2BPNK2	Twin infrared / 90µm pitch											
ingli opeca	★ RLD2BPNK3	Twin infrared / 28µm pitch											
660nm Lase													
Low Power	RLD65MPT7	DVD Single beam / CAN											
Low I ower	RLD65MPT3-13A	DVD Single beam / Glass-sealed											
780nm Lase	er												
	RLD78NZH1	Infrared single / 5mW											
High Speed	RLD78NZM1	Infrared single / 10mW											
riigii opeed	New RLD78NZM2	Infrared single / 15mW											
	★ RLD78NZM3	Infrared single / 15mW											
	RLD78MPA1	CD / I CUT CAN Package											
Low Power	RLD78MRA1	CD / Resin package											
High Speed	RLD78MZGM	Infrared single / 5mW											
High Power	RLD78PPY5	CD=240mW											

Low Output 2-Wavelength Laser Diode for DVD/CD Playback

RLD2WMNL2

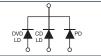
Low operating current and guaranteed operation up to 85°C - ideal for car navigation and DVD systems

Product Outline


ROHM's dual-wavelength laser diode was designed for DVD and navigation systems exposed to harsh environments, such as in cars. An original structure is utilized for low current operation and stable operation up to 85°C. The package features a CAN-type structure with a sealed glass window, providing a high degree of reliability under virtually any environment.

New waveguide enables low current operation

An optically transparent real index guide is utilized to minimize loss due to light absorption, allowing operation with minimal current.


The proprietary structure ensures stable operation up to 85°C, reducing operating current by 44% and 43% over conventional DVD and CD laser diodes, respectively.

Specifications

Absolute Maxim	Absolute Maximum Ratings												
Part No.	Light Output Po(mW)	Reverse Voltage VR(V)	Operating Temp. Topr(℃)	Storage Temp. Tstg(℃)									
RLD2WMNL2	7/7	2	-30 to +85	-40 to +85									

Equivalent Circuit

Electrical · Optical Characteristics(Tc=25°C, Po=5mW)

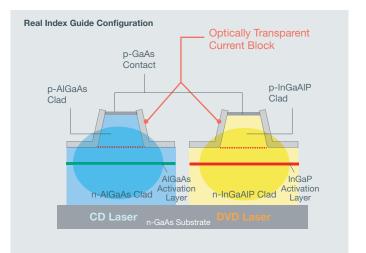
Par	rt No.	lp(nm) Ith(mA) Iop(mA)		Operating Voltage Vop(V)	Monitor Current Im(mA)	Horizontal Divergence q//(deg)	Vertical Divergence q⊥(deg)	
RLD2\	WMNL2	663/785	18/15	24/20	2.3/1.8	0.25/0.25	10/10	28/32

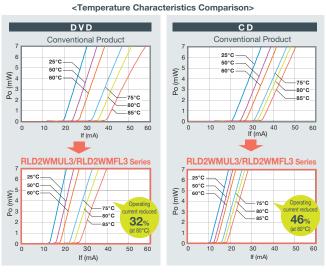
Low Output 2-Wavelength Laser Diodes for DVD/CD Playback

RLD2WMUL3 / RLD2WMFL3 Series

Supports high temperarure operation for gaming consoles and portable equipment

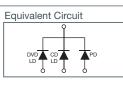
Product Outline


ROHM's dual-wavelength laser diode was designed for DVD and navigation systems exposed to harsh environments, such as in cars. An original structure is utilized for low current operation and stable operation up to 85°C. The package features a CAN-type structure with a sealed glass window, providing a high degree of reliability under virtually any environment.


New waveguide enables low current operation

An optically transparent real index guide is utilized to minimize loss due to light absorption, allowing operation with minimal current.

High temperature operation (80°C)


Operating current is reduced by 32% and 46% for DVD and CD playback, respectively, compared with conventional products (RLD2WMUV2 / RLD2WMFV2). Stable operation is guaranteed up to 80° C, 5° C more than standard models.

Specifications

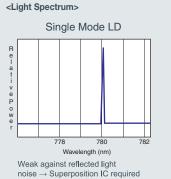
Absolute Maxir	num Ratings					
Part No.	Light Output Po(mW)	Reverse Voltage VR(V)	Operating Temp. Topr(℃)	Storage Temp. Tstg(°C)		
RLD2WMUL3	7/7	2/2	-10 to +80	-40 to +85		
RLD2WMFL3	7/7	2/2	-10 to +80	-40 to +85		

Electrical · Optical Characteristics(Tc=25°C, Po=5mW)

Part No.	Oscillation Wavelength Ip(nm)	Threshold Current Ith(mA)	Operating Current lop(mA)	Operating Voltage Vop(V)	Monitor Current Im(mA)	Horizontal Divergence q//(deg)	Vertical Divergence q⊥(deg)
RLD2WMUL3	658/782	13/12	18/17	2.2/1.8	0.25/0.25	8.5/10	27/32
RLD2WMFL3	658/782	13/12	18/17	2.2/1.8	0.15/0.17	8.5/10	27/32

Self-pulsation Dual Wavelength Laser Diodes for DVD/CD Playback

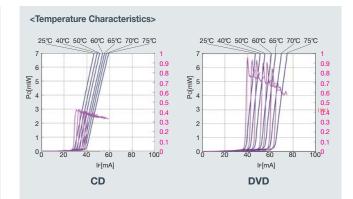
RLD2WM R1 Series


Original configuration utilized for low 70mA operating current

Product Outline

ROHM dual wavelength self-pulsation laser diodes for DVD/CD players were designed to provide low operating current and low noise operation under high temperatures. The unique self-pulsation method eliminates the need for a superposition IC and radiation countermeasures. Separate containment control structures are utilized for light (pulsation) and current (affects temperature and operating current characteristics), resulting in an operating current of only 70mA.

Reflected light noise countermeasures unnecessary


Conventional single mode laser diodes are weak against reflected light noise, making a superposition IC necessary. ROHM's self-pulsation laser diodes, however, operate by turning the oscillation ON/OFF at high frequency (in the hundreds of MHz), eliminating the need for noise countermeasures.

Stable at high temperatures

A unique structure is utilized for both current and light containment, resulting in low current operation and low noise, even under high temperatures.

Specifications

Absolute Maximum Ratings

Part No.	Light Output Po (mW)	Reverse Voltage VR (V)	Operating Temp. Topr (°C)	Storage Temp. Tstg (°C)
RLD2WMUR1 RLD2WMFR1 RLD2WMDR1	7/6	2	-10 to +70	-40 to +85

Electrical and Optical Characteristics (Tc=25°C, Po=5mW)

P	Part No.	Oscillation Wavelengths λp (nm)	Initial Oscillation Current Ith (mA)	Operating Current Iop(mA)	Operating Voltage Vop (V)	Monitor Current Im (mA)	Horizontal Spread Angle θ// (deg)	Vertical Spread Angle θ_{\perp} (deg)
	2WMFR1 2WMDR1	658/790	35/30	45/45	2.3/1.9	0.13/0.26	9/10	35/39
RLD2	WMUR1	658/790	35/30	45/45	2.3/1.9	0.15/0.18	9/10	35/39

Narrow Pitch Twin Beam Infrared Laser Diodes for Laser Printers

RLD2BPNK3 Series

New materials utilized for narrow (28µm) pitch and superior temperature characteristics

Product Outline

New Structure

GaAs

New Materia

GaAs Sub

Conventional laser diodes with a narrow luminous point interval are susceptible to the thermal effects of neighboring components during operation, resulting in reduced performance. In answer to this ROHM has developed a dual-beam infrared laser diode that utilizes novel materials for excellent temperature characteristics, even with a narrow pitch (28µm).

Original material technology

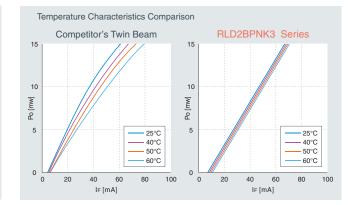
Proprietary construction prevents carrier overflow from the active layer (AlGaAs) during high temperature operation.

ROHM's New Narrow Pitch Infrared Twin Beam Laser Diode Element Structure

Contact Laver

Current Block

Laye


P-CLAD Lave

Active Laye

N-CLAD Laye

Twin beam type with excellent temperature characteristics

The utilization of new materials results in a change in current of only 6% (at 6mW) when Tc increases from $25^{\circ}C$ to $60^{\circ}C$. Lower droop characteristics are also ensured.

Specifications

AlGaAs

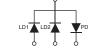
AlGaAs -

Absolute Maximum Ratings (TC=25°C)

Conventional Structure

GaAs

AlGaAs


AlGaAs

GaAs Sub

		-	
Symbol	Po	VR	Top Max.
Unit	mW	V	°C
Limits	10	2	-10 to +60

AlGaAs

Electrical • Optical Characteristics (TC=25°C)

Symbol	lth	Іор	Vop	η	Im	θ″	θ⊥	λ	Beam Pitch	
Unit	mA	mA	V	mW/mA	mA	deg	deg	nm	μm	
Typical	10	30	2.3	0.3	3.5	9	24	792	28	

Condition : Po=6mW

Product Lineup

660nm / 780nm Dual Wavelength Lasers

Туре	Part No.	Wavelength λP		Maximu c=25°	m Ratings C)	E	lectrica		Dptical ⁻ c=25°	Charao C)	cteristic	cs	Po (mW)	Package	Equivalent	RoHS
Type	Tarrivo.	(nm)	P _O (mW)	V _R (V)	T _{opr} Max. (V)	I _{th} (mA)	I _{OP} (mA)	η (W/A)	V _{OP} (V)	I _m (mA)	$\substack{\theta_{\perp} \\ \text{(deg)}}$	$\substack{\theta_{//} \\ \text{(deg)}}$	(mvv)	Tackage	Circuit	
	RLD2WMUV2	658	7	2	75	20	27	0.72	2.3	0.22	27	8	5	X		Yes
	neb2wwwov2	782	7	2	75	18	27	0.55	1.8	0.25	32	9	5	φ5.6mm (4PIN Open Package)		103
	RLD2WMFV2	658	7	2	75	20	27	0.72	2.3	0.13	27	8	5	19		Yes
		782	7	2	75	18	27	0.55	1.8	0.16	32	9	5	High radiation 4PIN frame		100
	ew RLD2WMFL1	660	7	2	75	13	19	0.85	2.3	0.15	27.5	8.5	5	50		Yes
Low/Low	(Higher ESD)	782	7	2	75	12	18	0.75	1.8	0.20	29.5	9.3	5	High radiation 4PIN frame	•	103
		663	7	2	85	18	24	0.7	2.3	0.25	28	10	5	X	PD	Yes
	(For Car)	785	7	2	85	15	20	0.7	1.8	0.25	32	10	5	φ5.6mm (4PIN)	(3) ○ (4)	103
	★ RLD2WMFL3 ★ RLD2WMUL3 (高温対応)	658	7	2	80	13	18	0.9	2.2	0.15	27	8.5	5	50	(3) • ◀ • (2) 660nm	Yes
		782	7	2	80	12	17	0.85	1.8	0.17	32	10	5	High radiation 4PIN frame	└─ ◀──○ (1)	
	RLD2WMFR1	658	6	2	70	35	45	0.75	2.3	0.13	37	9	5	High radiation 4PIN frame radiation 4PIN frame		Yes
	RLD2WMDR1 (Self pulsation)	790	7	2	70	30	45	0.5	1.9	0.26	39	11	5		h 1e	105
	★ RLD2WMFL4	660	10	2	75	15	23	0.95	2.3	0.24	27	8.5	8	5		Yes
Medium/Middle		782	10	2	75	12	22	0.8	1.8	0.32	29	9	8	High radiation 4PIN frame		103
	ew/ RLD2WMUS3	662	20	2	75	22	40	0.8	2.3	0.6	20	10	15	S		Yes
	THE DE WINDOOD	785	20	2	75	22	45	0.8	1.8	0.75	17	10	15	φ5.6mm (4PIN Open Package)		103
Low/High	RLD2WMGZ4	658	10	2	75	25	30	0.8	2.3	-	24	10.5	5	9		Yes
LOW/Tright	NEDZWINGZ4	782	240 (Pulse)	2	75	35	130	0.95	1.9	-	16	8	90	High radiation 3PIN frame		165
High/Low	RLD2WMZS1	662	240 (Pulse)	2	75	60	150	0.9	2.7	-	17	9.5	80	*	780nm ▲ (2)	Yes
- light LOW		782	20	2	75	65	70	0.8	1.9	-	15.5	7.5	6	φ5.6mm (©)	(3) o 660nm ▲ (1)	103
High/High	RLD2WMGU1	662	300 (Pulse)	2	85	60	160	0.9	2.8	-	17.5	9.5	90	9		Yes
- iigii/ iigii		785	350 (Pulse)	2	90	55	250	0.85	2.5	-	16	8.5	160	High radiation 3PIN frame		162

★ : Under development Note : Unless otherwise specified, the electrical and optical characteristics are typical values.

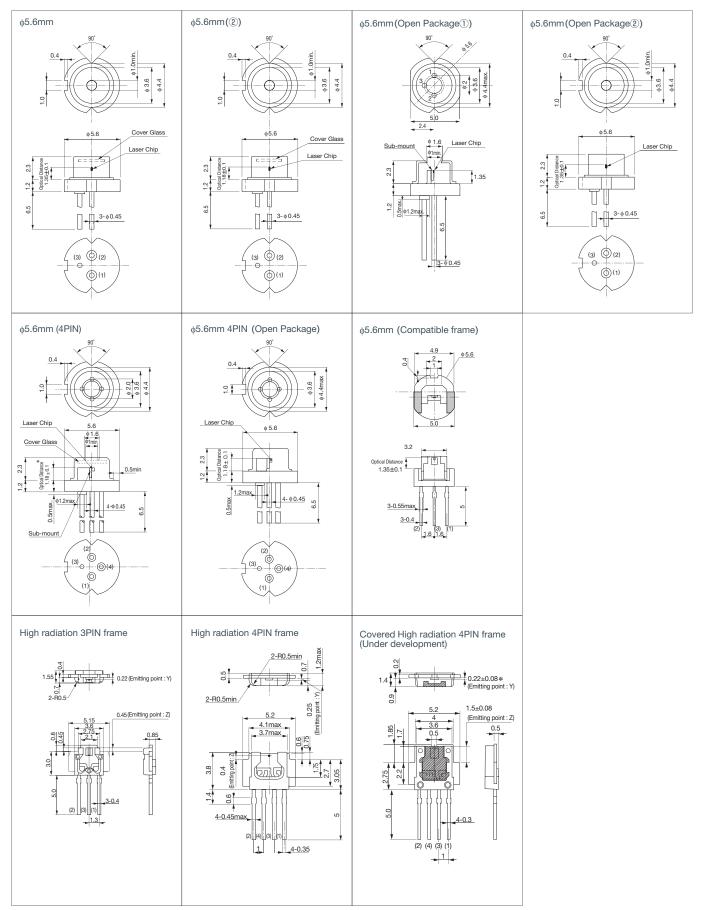
Multi-beam Lasers

Туре	Part No		Number of Pitch	Mauolonath		Maximur c=25°	n Ratings C)	Electrical and Optical Characteristics (Tc=25°C)						cs	Po	Package	Equivalent	RoHS
туре		Beams (j.	(µm)	(nm)	Po (mW)	V _R (V)	T _{opr} Max. (V)	I _{th} (mA)	I _{OP} (mA)	η (W/A)	V _{OP} (V)	I _m (mA)	$\begin{array}{c} \theta_{\perp} \\ \text{(deg)} \end{array}$	θ _{//} (deg)	(mŴ)	. donago	Circuit	none
High	★ RLD2BPNK2	2	90	785	10	2	60	10	30	0.3	1.8	3.0	29	9.5	6	φ5.6mm (4PIN)	PD ▶ ○ (4) LD2	Yes
Speed	★ RLD2BPNK3	2	28	790	10	2	60	10	30	0.3	2.4	3.4	21	9.5	6	φ5.6mm (4PIN)	(3) ○ (2) LD1 (1)	Yes

★ : Under development Note : Unless otherwise specified, the electrical and optical characteristics are typical values.

660nm Lasers

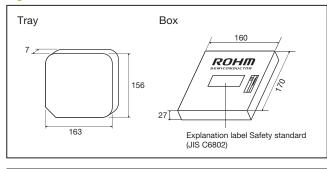
Tv	ре	Part No.	Wavelength λP	Absolute Maximum Ratings (Tc=25°C)		Electrical and Optical Characteristics (Tc=25°C)						cs	Po	Package	Equivalent	RoHS	
. y	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(nm)	Po (mW)	V _R (V)	T _{opr} Max. (V)	I _{th} (mA)	I _{OP} (mA)	η (W/A)	V _{OP} (V)	I _m (mA)	$\substack{\theta_{\perp} \\ \text{(deg)}}$	$\begin{array}{c} \theta_{/\prime} \\ \text{(deg)} \end{array}$	(mŴ)	i donago	Circuit	
Lo	ow	RLD65MPT7	655	7	2	70	20	30	0.7	2.3	0.2	27	8	5	φ5.6mm (Open Package@)		Yes
Pov	ower	RLD65MPT3-13A	655	5	2	40	30	40	0.4	2.3	0.2	27	8	5	у ф5.6mm	(3) o→ LD ≰→o (1)	Yes


Note : Unless otherwise specified, the electrical and optical characteristics are typical values.

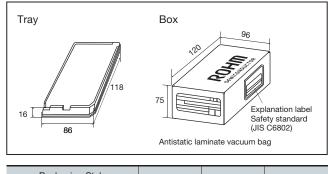
780nm Lasers

Туре	Part No.	Wavelength λP		Maximun c=25°(Electrical and Optical Characteristics (Tc=25°C)							Po (mW)	Package Equivalent		RoHS
туре	Tarrio.	(nm)	Po (mW)	V _R (V)	T _{opr} Max. (V)	I _{th} (mA)	I _{OP} (mA)	η (W/A)	V _{OP} (V)	I _m (mA)	$_{\text{(deg)}}^{\theta_{\perp}}$	$\substack{\theta_{//} \\ \text{(deg)}}$	(mVV)	Tackage	Circuit	
	RLD78NZH1	785	5	2	60	20	27	0.3	1.9	0.45	28	11	3	φ5.6mm		Yes
	RLD78NZH2	785	10	2	60	20	35	0.4	1.9	0.45	28	11	6	φ5.6mm		Yes
High Speed	RLD78NZM1	790	10	2	60	10	20	0.6	1.9	1.0	28	9	6	φ5.6mm	(J) 0 LD → (I) _	Yes
	New RLD78NZM2	790	15	2	60	10	20	0.6	1.9	1.0	28	9	6	φ5.6mm		Yes
	★ RLD78NZM3	784	11	2	60	10	20	0.6	1.9	1.0	28	9	6	φ5.6mm		Yes
	RLD78MPA1	785	5	2	70	35	45	0.25	1.9	0.15	37	11	3	φ5.6mm (Open Package®)	(3) o	Yes
Low Power	RLD78MRA1	785	4.5	2	70	35	45	0.25	1.9	0.15	37	11	3	φ5.6mm (Compatible frame)		Yes
	RLD78MZGM	785	5	2	60	35	45	0.25	1.9	0.2	37	11	3	پ ¢5.6mm		Yes
High Power	RLD78PPY5	784	240 (Pulse)	2	75	35	130	0.9	2.0	_	16.5	9	90	پ ¢5.6mm (Open Package®)	(3) •LD (1) • (1)	Yes

★ : Under development Note : Unless otherwise specified, the electrical and optical characteristics are typical values.


Dimensions (Unit : mm)

* : Please note that differences may exist depending on the part number. Therefore, it is strongly recommended that the customer verify the actual specifications before usage.


Packing Specifications (Unit : mm)

High Radiation Frame

Packagi	ng Style	Quantity per unit	Basic Ordering unit	Weight		
Packaging Type	Case	(pcs/tray)	(pcs)	(g)		
Tray	Vacuum Pack	200	1000	240		

Other

Packagi	ng Style	Quantity per unit	Basic Ordering unit	Weight	
Packaging Type	Case	(pcs/tray)	(pcs)	(g)	
Tray	Vacuum Pack	100	500	250	

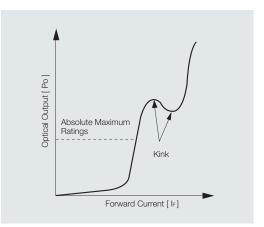
Safety

The light emitted from laser diodes, while almost invisible to the human eye, can cause retinal damage if viewed directly. Never look directly into the laser beam or through any lenses or fibers when the system is operating.

For optical axis alignment or other operations, we recommend the use of an infrared-sensitive camera (ITV) or wearing protective goggles.

The products described in this specification are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communication device, electrical appliances, and electronic toys). If you intend to use these products or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments. transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Symbols and Definitions


Absolute maximum ratings

Absolute maximum ratings are values which must not be exceeded even momentarily regardless of external conditions.

These values are specified for a case temperature TC of 25°C.

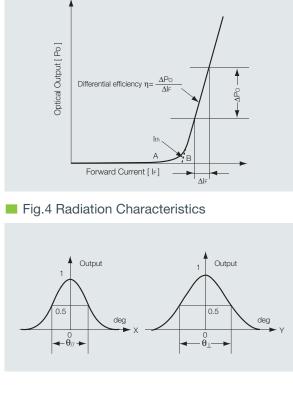
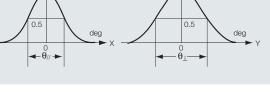

Parameter	Symbol	Definition
Optical Output	Po	Maximum allowable optical output during continuous or pulse operation. No kinks will appear in the output vs. forward current curve up to this output value. (Fig. 1)
Reverse Voltage	V _R	The maximum allowable voltage when a reverse bias is applied to the device. Lasers and photo diodes are rated separately.
Operating Temperature	Topr	Allowed ambient temperature range when the device is in operation. Delined to be the case temperature of the device.
Storage Temperature	Tstg	Allowed temperature range when the device is being stored.

Fig.1 Optical Output vs. Forward Current


Electrical and Optical Characteristics

Item	Symbol	Definition
Threshold current	I _{th}	In Fig. 2, A is the spontaneous emission range and B is the stimulated emission range. The threshold current is the current at which laser emission begins.
Operating current	I _{OP}	The forward current required to generate the specified optical output.
Operating voltage	V _{OP}	The forward voltage required to generate the specified optical output.
Differential efficiency	η	The average increase in the output per unit of drive current. In the laser emission range, this is the slope of the linear optical output vs. forward current curve. (Fig. 2)
Monitor current	Im	When the specified optical output is generated, this is the output current of the photodiode when a specified reverse voltage is applied to the monitor photodiode.
Parallel divergence angle Perpendicular divergence angle	$\begin{array}{c} \theta_{\prime\prime} \\ \theta_{\perp} \end{array}$	Light emitted from the laser spreads as shown in Fig. 3. The result of measurements of this spread in the parallel (x) and perpendicular (y) directions with respect to the junction surface is shown in Fig. 3. The widths of the spread at the points where the strength drops to 1 / 2 the peak strength (half value full angles) are defined as angles and called $\theta_{i/}$ and θ_{\perp} . (Fig. 4)
Parallel deviation angle Perpendicular deviation angle	$\Delta \phi_{\prime\prime} \ \Delta \phi_{\perp}$	These values express the deviation of the optical axis with respect to the reference plane, and are defined for the parallel and perpendicular spread angles (Fig. 4) to be (a - b) $/ 2$ (Fig. 5).
Emission point accuracy	ΔΧ, ΔΥ, ΔΖ	This indicates the amount of deviation of the emission point. ΔX and ΔY indicate deviation from the center of the package, and ΔZ indicates deviation from the reference plane. (Fig. 6)
Peak emission Wavelength	λ	Peak emission wavelength when generating the specified output. As shown in Fig. 17, the emission spectrum has both a single mode and a multimode. In the multimode, the wavelength is delined as the wavelength with the highest intensity.
Coherency	γ	This parameter indicates the coherence of a laser beam. When the laser beam forms interference fringes, this parameter indicates the amount of attenuation of the clarity of the fringes.
Astigmatism (Wave Iron aberration)	As	Astigmatism refers to an apparent difference between the parallel and perpendicular (with respect to the junction plane) focal points (Fig. 8).
Droop	ΔΡ	Attenuation of output when the laser is driven by pulse. This is delined as (P1–P4) / P4 \times 100% as shown in Fig. 9.

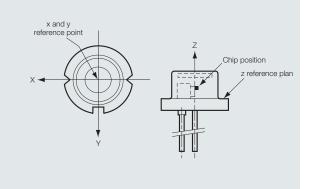


Fig.2 Optical Output vs. Forward Current

Fig.6 Emission Point Accuracy

Fig.8 Astigmatism

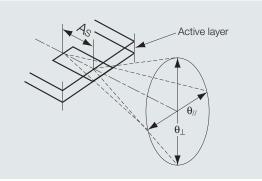
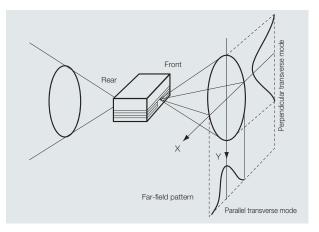
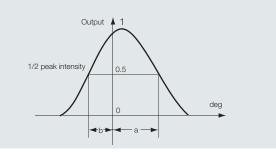
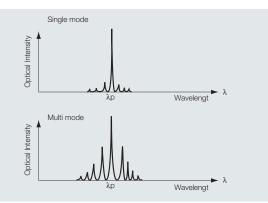


Fig.3 Radiation Characteristics

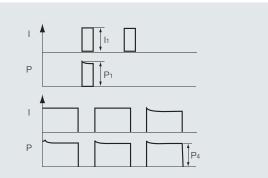

Fig.5 Deviation Angle

Fig.7 Emission Spectrum

Fig.9 Droop

The content specified in this document is correct as of 1st December, 2009.

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

ROHM	Sales	Offices

San Diego

Atlanta

Boston

Chicago Dallas

Denver

Detroit

Nashville

Dusseldorf

Mexico

Munich

France

Stuttgart

Sales Offices Co	ontact us for furthe
+1-858-625-3630 United Kingdom	+44-1-908-272400
+1-770-754-5972 Denmark	+45-3694-4739
+1-978-371-0382 Espoo	+358-9725-54491
+1-847-368-1006 Salo	+358-2-7332234
+1-972-473-3748 Oulu	+358-8-5372930
+1-303-708-0908 Barcelona	+34-9375-24320
+1-248-348-9920 Hungary	+36-1-4719338
+1-615-620-6700 Poland	+48-22-5757213
+52-33-3123-2001 Russia	+7-495-739-41-74
+49-2154-9210 Seoul	+82-2-8182-700
+49-8999-216168 Masan	+82-55-240-6234
+49-711-7272-370 Dalian	+86-411-8230-8549

ntact us for further	informatio	on about the proc
+44-1-908-272400	Tianjin	+86-22-23029181
+45-3694-4739	Shanghai	+86-21-6279-2727
+358-9725-54491	Hangzhou	+86-571-87658072
+358-2-7332234	Nanjing	+86-25-8689-0015
+358-8-5372930	Ningbo	+86-574-87654201
+34-9375-24320	Qingdao	+86-532-8577-9312
+36-1-4719338	Suzhou	+86-512-6807-1300
+48-22-5757213	Wuxi	+86-510-82702693
+7-495-739-41-74	Guangzhou	+86-20-3878-8100
+82-2-8182-700	Huizhou	+86-752-205-1054
+82-55-240-6234	Fuzhou	+86-591-8801-8698
+86-411-8230-8549	Dongguan	+86-769-8393-3320
+86-10-8525-2483	Shenzhen	+86-755-8307-3008

about the products. -86-22-23029181 Xiamen 36-21-6279-2727 Zhuhai 6-21-6279-2727 6-571-87658072 Hong Kong +852-2-740-6262 6-25-8689-0015 Taipei 6-574-87654201 -532-8577-9312 Singapore Philippines Thailand 3-512-6807-1300 510-82702693 36-20-3878-8100 36-752-205-1054 6-591-8801-8698 Kyoto 6-769-8393-3320 Yokohama

+86-592-238-5705 +86-756-3232-480 +886-2-2500-6956 Kaohsiung +886-7-237-0881 +65-6332-2322 +63-2-807-6872 +66-2-254-4890 Kuala Lumpur +60-3-7958-8355 Penang +60-4-2286453 +81-75-365-1218 +81-45-476-2290

ROHM Co., Ltd. 21 Saiin Mizosaki-cho, Ukvo-ku,

Kyoto 615-8585 Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172

R0129A

www.rohm.com

+33-1-4060-8730 Beijing Catalog No.52P6200E 01.2010 ROHM ©